Distributed Incremental Least Mean-Square for Parameter Estimation using Heterogeneous Adaptive Networks in Unreliable Measurements

نویسندگان

  • M. Farhid
  • M. Shamsi
  • M. H. Sedaaghi
چکیده

Adaptive networks include a set of nodes with adaptation and learning abilities for modeling various types of self-organized and complex activities encountered in the real world. This paper presents the effect of heterogeneously distributed incremental least mean-square (LMS) algorithm with ideal links on the quality of unknown parameter estimation. In heterogeneous adaptive networks, a fraction of the nodes, defined based on previously calculated signal-to-noise ratio (SNR), is assumed to be the informed nodes that collect data and perform in-network processing, while the remaining nodes are assumed to be uninformed and only participate in the processing tasks. As our simulation results show, the proposed algorithm not only considerably improves the performance of the Distributed Incremental LMS algorithm in the same conditions but also proves a good accuracy of estimation in cases where some of the nodes make unreliable observations (noisy nodes). Also studied is the application of the same algorithm on the cases where node failure happens.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distributed Incremental Least Mean-Square for Parameter Estimation using Heterogeneous Adaptive Networks in Unreliable Measurements

Adaptive networks include a set of nodes with adaptation and learning abilities for modeling various types of self-organized and complex activities encountered in the real world. This paper presents the effect of heterogeneously distributed incremental LMS algorithm with ideal links on the quality of unknown parameter estimation. In heterogeneous adaptive networks, a fraction of the nodes, defi...

متن کامل

A Robust Distributed Estimation Algorithm under Alpha-Stable Noise Condition

Robust adaptive estimation of unknown parameter has been an important issue in recent years for reliable operation in the distributed networks. The conventional adaptive estimation algorithms that rely on mean square error (MSE) criterion exhibit good performance in the presence of Gaussian noise, but their performance drastically decreases under impulsive noise. In this paper, we propose a rob...

متن کامل

On the effect of low-quality node observation on learning over incremental adaptive networks

In this paper, we study the impact of low-quality node on the performance of incremental least mean square (ILMS) adaptive networks. Adaptive networks involve many nodes with adaptation and learning capabilities. Low-quality mode in the performance of a node in a practical sensor network is modeled by the observation of pure noise (its observation noise) that leads to an unreliable measurement....

متن کامل

Incremental adaptive networks implemented by free space optical (FSO) communication

The aim of this paper is to fully analyze the effects of free space optical (FSO) communication links on the estimation performance of the adaptive incremental networks. The FSO links in this paper are described with two turbulence models namely the Log-normal and Gamma-Gamma distributions. In order to investigate the impact of these models we produced the link coefficients using these distribu...

متن کامل

A Reliability of Measurement Based Algorithm for Adaptive Estimation in Sensor Networks

In this paper we consider the issue of reliability of measurements in distributed adaptive estimation problem. To this aim, we assume a sensor network with different observation noise variance among the sensors and propose new estimation method based on incremental distributed least mean-square (IDLMS) algorithm. The proposed method contains two phases: I) Estimation of each sensors observation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017